
Search StackifySearch Stackify

Topics/KeywordsTopics/Keywords

ASP.NETASP.NET Product UpdatesProduct Updates

.NET Core.NET Core App MonitoringApp Monitoring

JavaJava App Performance TipsApp Performance Tips

AzureAzure Error HandlingError Handling

AWSAWS Logging TipsLogging Tips

CloudCloud DevOpsDevOps

Popular PostsPopular Posts
ASP.NET Performance: 9 Types ofASP.NET Performance: 9 Types of

Tools You Need to Know!Tools You Need to Know!

How to Troubleshoot IIS WorkerHow to Troubleshoot IIS Worker

Process (w3wp) High CPU UsageProcess (w3wp) High CPU Usage

How to Monitor IIS Performance:How to Monitor IIS Performance:

From the Basics to Advanced IISFrom the Basics to Advanced IIS

Performance MonitoringPerformance Monitoring

SQL Performance Tuning: 7SQL Performance Tuning: 7

Practical Tips for DevelopersPractical Tips for Developers

Looking for New RelicLooking for New Relic

Alternatives & Competitors?Alternatives & Competitors?

Learn Why Developers PickLearn Why Developers Pick

RetraceRetrace

Recent PostsRecent Posts

How to Optimize WebsiteHow to Optimize Website

PerformancePerformance

How to monitor your webHow to monitor your web

application availabilityapplication availability

Netreo Expands APMNetreo Expands APM

Capabilities with StrategicCapabilities with Strategic

Acquisition of StackifyAcquisition of Stackify

Stackify + Netreo Creates a DevStackify + Netreo Creates a Dev

+ Ops Powerhouse+ Ops Powerhouse

How to Optimize JavaScriptHow to Optimize JavaScript

PerformancePerformance

Stackify + Netreo Creates a Dev + Ops Powerhouse. Click here to read more about the acquisition.

Product  Pricing Solutions  Learn  Login

PowerShell Commands Every Developer Should Know:

50+ Cmdlets for Getting Things Done, Monitoring

Performance, Debugging

ALEXANDRA ALTVATER | SEPTEMBER 21, 2017 | DEVELOPER TIPS, TRICKS & RESOURCES

Many developers love PowerShell, and for good reason: it adds power, functionality,

and flexibility to the Windows Command Prompt, where many of us spend a good deal

of time. It does, however, come with a bit of a learning curve, but once you’ve

mastered the essential commands you need to know, it’s productivity on steroids.

PowerShell commands are known as cmdlets, and these cmdlets are the driving force

behind its functional capabilities. From commands that improve the overall Windows

experience to commands useful for development work, there are dozens of important

commands developers should know. We’ve put together this list to serve as a handy

reference guide for those who are just beginning to tap into the power of PowerShell

as well as those who want to level-up their PowerShell experience, including:

Basic PowerShell Cmdlets

PowerShell Commands for Getting Things Done

Cmdlets for Performance Monitoring, Testing, and Debugging

In addition to cmdlets, there are dozens of parameters and methods that help you get

the most out of your scripts. The WhatIf parameter is particularly useful for testing

PowerShell scripts without actually running them (@pluralsight). There are typically

several parameters and methods available for each command. The commands listed

below are a good starting point for any developer, but to fully realize the benefits, you

should master parameters and other methods as well.

Basic PowerShell Cmdlets

These basic PowerShell commands are helpful for getting information in various

formats, configuring security, and basic reporting.

 Search

Start Free

Trial

https://stackify.com/how-to-optimize-website-performance/
https://stackify.com/how-to-monitor-your-web-application-availability/
https://stackify.com/netreo-expands-apm-capabilities-with-strategic-acquisition-of-stackify/
https://stackify.com/stackify-netreo-blog/
https://stackify.com/how-to-optimize-js-performance/
https://stackify.com/?tag=asp.net,net-core
https://stackify.com/stackify/
https://stackify.com/content/net-core/
https://stackify.com/?tag=monitoring,apm
https://stackify.com/content/java/
https://stackify.com/?tag=performance,profiler,apm
https://stackify.com/content/azure/
https://stackify.com/?tag=exception,exceptions,error,errors
https://stackify.com/content/AWS/
https://stackify.com/?tag=logs,logging
https://stackify.com/?tag=cloud,azure,aws
https://stackify.com/content/DevOps/
https://stackify.com/asp-net-performance-tools-you-need-to-know/
https://stackify.com/w3wp-high-cpu-usage/
https://stackify.com/how-to-monitor-iis-performance/
https://stackify.com/performance-tuning-in-sql-server-find-slow-queries/
https://stackify.com/new-relic-alternatives-for-developers/
https://stackify.com/how-to-optimize-website-performance/
https://stackify.com/how-to-monitor-your-web-application-availability/
https://stackify.com/netreo-expands-apm-capabilities-with-strategic-acquisition-of-stackify/
https://stackify.com/stackify-netreo-blog/
https://stackify.com/how-to-optimize-js-performance/
https://stackify.com/stackify-developer-ebooks/
https://stackify.com/stackify-netreo-blog/
https://stackify.com/
https://stackify.com/pricing/
https://s1.stackify.com/?_ga=2.236312007.795068548.1606150356-1374364069.1597069964
https://stackify.com/developers/
https://www.pluralsight.com/blog/software-development/test-powershell-with-whatif
https://twitter.com/pluralsight
https://info.stackify.com/cs/c/?cta_guid=183d1fe5-e162-48d6-9b05-a5bae1720129&signature=AAH58kGdBchucsq3JzmVxQf1BtSQRx3amw&placement_guid=a2ceb3bf-6dc4-4881-b74a-87bade4873fa&click=7a73e1e0-3524-487f-b3f5-7e2a7f667898&hsutk=c7a000001d30195417fc0179236c23fe&canon=https%3A%2F%2Fstackify.com%2Fpowershell-commands-every-developer-should-know%2F&portal_id=207384&redirect_url=APefjpHimv1t5GMJ9L9anaXniUUrNwobASCuUV8q1AP_KGeqyIKPr5G3Fp9xh8b_9XzxuojeU4pAhPGDTHFpgtqVg3kx3TqQx46ebasjh08qYdwUJSJI_sY4y8nv700QyQVKYsn78fr_NBF5lk6ztPD4_C5S7Q5tvgfQgKjeoSa_EdSzx7iyP9o
https://s1.stackify.com/account/createclient/?fromretrace=1&_ga=2.117403919.841090771.1606836463-1374364069.1597069964

1. Get-Command

Get-Command is an easy-to-use reference cmdlet that brings up all the commands

available for use in your current session.

Simply type in this command:

get-command

The output will look something like this (@MS_ITPro):

CommandType Name Definition

----------- ---- ----------

Cmdlet Add-Content Add-Content [-Path] <String[...

Cmdlet Add-History Add-History [[-InputObject] ...

Cmdlet Add-Member Add-Member [-MemberType]

2. Get-Help

The Get-Help command is essential for anyone using PowerShell, providing quick

access to the information you need to run and work with all of the available

commands.

If you wanted some examples, for instance, you’d enter the following (@jp_jofre):

Get-Help [[-Name] <String>] [-Path <String>] [-Category <String[]>] [-Component <S

tring[]>]

[-Functionality <String[]>] [-Role <String[]>] [-Examples] [<CommonParameters>]

3. Set-ExecutionPolicy

Microsoft disables scripting by default to prevent malicious scripts from executing in

the PowerShell environment. Developers want to be able to write and execute scripts,

however, so the Set-ExecutionPolicy command enables you to control the level of

security surrounding PowerShell scripts. You can set one of four security levels:

Restricted: This is the default security level which blocks PowerShell scripts from

running. In this security level, you can only enter commands interactively.

All Signed: This security level allows scripts to run only if they are signed by a

trustworthy publisher.

Remote Signed: In this security level, any PowerShell scripts that were created

locally are permitted to run. Scripts created remotely are permitted to run only if

they’ve been signed by a reputable publisher.

Unrestricted: As its name suggests, the unrestricted security level permits all scripts

to run by removing all restrictions from the execution policy.

Similarly, if you’re working in an unfamiliar environment, you can easily find out what

the current execution policy is using this command:

Get-ExecutionPolicy

Check out this thread on SuperUser for more information on configuring the execution

policy in PowerShell. (@StackExchange)

4. Get-Service

It’s also helpful to know what services are installed on the system. You can easily

access this information with the following command:

Get-Service

The output will look something like the following (@MS_ITPro):

https://stackify.com/guest-blogging-guidelines/
https://technet.microsoft.com/en-us/library/ee176842.aspx
https://twitter.com/MS_ITPro
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/get-help
https://twitter.com/jp_jofre
https://superuser.com/questions/106360/how-to-enable-execution-of-powershell-scripts
https://twitter.com/StackExchange
https://technet.microsoft.com/en-us/library/ee176858.aspx
https://twitter.com/MS_ITPro

Status Name DisplayName

------ ---- -----------

Running AdobeActiveFile... Adobe Active File Monitor V4

Stopped Alerter Alerter

Running ALG Application Layer Gateway Service

Stopped AppMgmt Application Management

Running ASChannel Local Communication Channel

If you need to know if a specific service is installed, you can append the -Name switch

and the name of the service, and Windows will show the state of the service.

Additionally, you can leverage filtering capabilities to return a specific subset of

currently installed services. The following example will result in an output of data from

the Get-Service command that’s been piped to the Where-Object cmdlet, which then

filters out everything other than the services that have been stopped:

Get-Service | Where-Object {$_.status -eq "stopped"}

Check out this post for some additional examples of Get-Service in action.

5. ConvertTo-HTML

If you need to extract data that you can use in a report or send to someone else, the

ConvertTo-HTML is one simple way to do so. To use it, pipe the output from another

command to the ConvertTo-HTML command and use the -Property switch to specify

which output properties you want in the HTML file. You’ll also need to provide a file

name.

For example, the following code creates an HTML page that lists the PowerShell aliases

in the current console:

PS C:\> get-alias | convertto-html > aliases.htm

PS C:\> invoke-item aliases.htm

Bonus: The

Export-CSV

cmdlet functions in much the same way, but exports data to a .CSV file rather than

HTML. Use

Select-Object

to specify which properties you want to be included in the output.

Check out this article from 4sysops for more information on using ConvertTo-HTML

effectively (@adbertram).

6. Get-EventLog

You can actually use PowerShell to parse your machine’s event logs using the Get-

EventLog cmdlet. There are several parameters available. Use the -Log switch followed

by the name of the log file to view a specific log. You’d use the following command, for

example, to view the Application log:

Get-EventLog -Log "Application"

Check out a few more examples of Get-EventLog in action in this post

(@nextofwindows). Other common parameters include (@SS64):

-Verbose

-Debug

-ErrorAction

http://www.computerperformance.co.uk/powershell/powershell_example_services.htm
https://msdn.microsoft.com/en-us/powershell/reference/4.0/microsoft.powershell.utility/convertto-html
https://4sysops.com/archives/building-html-reports-in-powershell-with-convertto-html/
https://twitter.com/adbertram
https://www.nextofwindows.com/10-examples-to-check-event-log-on-local-and-remote-computer-using-powershell
https://twitter.com/nextofwindows
https://ss64.com/ps/get-eventlog.html
https://twitter.com/SS64

-ErrorVariable

-WarningAction

-WarningVariable

-OutBuffer

-OutVariable

7. Get-Process

Much like getting a list of available services, it’s often useful to be able to get a quick list

of all the currently running processes. The Get-Process command puts this information

at your fingertips.

Bonus: Use Stop-Process to stop processes that are frozen or is no longer responding.

If you’re not sure what process is holding you up, use Get-Process to quickly identify

the problematic process. Once you have the name or process ID, use Stop-Process to

terminate it.

Here’s an example. Run this command to terminate all currently running instances of

Notepad (@MS_ITPro):

Stop-Process -processname notepad

You can use wildcard characters, too, such as the following example which terminates

all instances of Notepad as well as any other processes beginning with note:

Stop-Process -processname note*

Check out this post for more information on killing processes with PowerShell

(@howtogeek):

8. Clear-History

What if you want to clear the entries from your command history? Easy – use the

Clear-History cmdlet. You can also use it to delete only specific commands. For

example, the following command would delete commands that include “help” or end in

“command” (@MS_ITPro):

PS C:\> Clear-History -Command *help*, *command

If you want to add entries to a session, use:

Add-History

Check out this post for some useful information on clearing the history and pre-loading

the history with a list of certain commands (@MS_ITPro).

9. Where-Object

Where-Object is one of the most important cmdlets to know, as it enables you to take a

dataset and pass it further down your pipeline for filtering (@jonathanmedd):

Get-Service | Where-Object {$_.Status -eq 'Running'}

Status Name DisplayName

------ ---- -----------

Running AdobeARMservice Adobe Acrobat Update Service

Running AppHostSvc Application Host Helper Service

Running Appinfo Application Information

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

https://technet.microsoft.com/en-us/library/ee177004.aspx
https://twitter.com/MS_ITPro
https://www.howtogeek.com/111130/application-not-responding-heres-how-to-kill-processes-with-powershell/
https://twitter.com/howtogeek
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.core/clear-history
https://twitter.com/MS_ITPro
https://blogs.msdn.microsoft.com/stevelasker/2016/03/25/clear-history-powershell-doesnt-clear-the-history-3/
https://twitter.com/MS_ITPro
http://www.jonathanmedd.net/2017/05/powershell-where-where-or-where.html
https://twitter.com/jonathanmedd/

Running BrokerInfrastru... Background Tasks Infrastructure Ser...

Running Browser Computer Browser

Running CDPSvc Connected Devices Platform Service

10. Set-AuthenticodeSignature

If you want to keep your work secure in production and prevent modification, use Set-

AuthenticodeSignature to add an Authenticode signature to a script or file.

> Set-AuthenticodeSignature somescript.ps1 @(Get-ChildItem cert:\CurrentUser\My -c

odesigning)[0] -IncludeChain "All" -TimestampServer "http://timestamp.verisign.co

m/scripts/timstamp.dll"

PowerShell Commands for Getting Things Done

When it comes to productivity, PowerShell can help you get things done with the

following commands.

11. ForEach-Object

The ForEach-Object cmdlet performs an operation against every item in a specified

group of input objects. While many cmdlets work with every object in a collection

anyway, you’ll need ForEach-Object for those situations in which you want to make

other modifications or apply specific formatting to all objects in a collection.

Here’s an example (@MS_ITPro). If you want to display a list of process names and

want those names to render in cyan, you might try the following:

Get-Process | Write-Host $_.name -foregroundcolor cyan

But the above will produce the following error:

At line:1 char:25

+ get-process | write-host <<<< $_.name -foregroundcolor cyan Write-Host : The inp

ut object

cannot be bound to any parameters for the command either because the command does

not

take pipeline input or the input and its properties do not match any of the parame

ters

that take pipeline input.

Because the Write-Host cmdlet doesn’t understand what you want to do with the data

that’s sent over the pipeline.

So, using the ForEach-Object cmdlet solves this problem:

Get-Process | ForEach-Object {Write-Host $_.name -foregroundcolor cyan}

Check out this tutorial for more information on ForEach-Object and working with loops

(@tomsitpro).

12. Clear-Content

If you want to delete the contents of an item but retain the item itself, you’ll use the

Clear-Content cmdlet:

Clear-Content C:\Temp\TestFile.txt

You can also use this command to clear the contents of all files with a specified file

extension. The following code would clear the contents of all files with the .txt

extension, for instance:

https://justinho.com/blog/2016/09/05/Signing-PowerShell-Scripts.html
https://technet.microsoft.com/en-us/library/ee176828.aspx
https://twitter.com/MS_ITPro
http://www.tomsitpro.com/articles/powershell-for-loop,2-845.html
https://twitter.com/tomsitpro

Clear-Content -path * -filter *.TXT –force

You can also use wildcard characters. Plus, you can clear the contents of any type of

file, from .txt files to .doc, .xls, and more.

Check out this post for more details.

13. Checkpoint-Computer

If you’re making major changes or running a risky experiment, you can set a restore

point on your machine with the Checkpoint-Computer cmdlet.

Note that you can only create a restore point using this cmdlet once every 24 hours. If

you run the command again, it will keep the previous restore point:

PS C:\> Checkpoint-Computer -Description "My 2nd checkpoint" -RestorePointType "Mo

dify_Settings"

PS C:\> Get-ComputerRestorePoint | format-list

__GENUS : 2

__CLASS : SystemRestore

__SUPERCLASS :

__DYNASTY : SystemRestore

__RELPATH : SystemRestore.SequenceNumber=59

__PROPERTY_COUNT : 5

__DERIVATION : {}

__SERVER : CLIENT2

__NAMESPACE : root\default

__PATH : \\CLIENT2\root\default:SystemRestore.SequenceNumber=59

CreationTime : 20120202180537.316029-000

Description : My 2nd checkpoint

EventType : 100

RestorePointType : 12

SequenceNumber : 59

Check out this article from MCP Mag for more (@MCPmag).

14. Compare-Object

It’s often useful to be able to compare two objects directly. You can do this using

Compare-Object, which generates a report on the differences between two sets such

as (@Marcam923):

PS G:\lee\tools> cd c:\temp

PS C:\temp> $set1 = "A","B","C"

PS C:\temp> $set2 = "C","D","E"

PS C:\temp> Compare-Object $set1 $set2

InputObject SideIndicator

----------- -------------

D =>

E =>

A <=

B <=

15. ConvertFrom-StringData

Use ConvertFrom-StringData to convert a string containing one or more value pairs to

a hash table. Here’s an example of what the command looks like:

$settings = $TextData | ConvertFrom-StringData

This command is useful in a variety of situations, such as when you want to save the

settings for a PowerShell script to enable others to edit the settings without working in

http://www.colorconsole.de/PS_Windows/en/Clear-Content.htm
https://mcpmag.com/articles/2012/02/21/powershell-windows-restore.aspx
https://twitter.com/MCPmag
http://www.leeholmes.com/blog/2013/11/29/using-powershell-to-compare-diff-files/
https://twitter.com/Marcam923
https://www.linkedin.com/pulse/powershell-tips-convert-string-data-hash-table-sunil-chauhan

the script code directly.

16. ConvertTo-SecureString

Convert an encrypted standard string to a secure string or plain text to a secure string

using ConvertTo-SecureString. This cmdlet is used in conjunction with ConvertFrom-

SecureString and Read-Host (@AdmArsenal):

ConvertTo-SecureString [-String] SomeString

ConvertTo-SecureString [-String] SomeString [-SecureKey SecureString] ConvertTo-Se

cureString [-String] SomeString [-Key Byte[]] ConvertTo-SecureString [-String] Som

eString [-AsPlainText] [-Force]

17. ConvertTo-XML

Use the ConvertTo-XML cmdlet to create an XML-based representation of an object.

This is also called serialization, and it’s a useful process for saving data for later re-use.

Note that it’s important that your expression writes objects to the pipeline. Anything

using Write-Host won’t write to the pipeline and therefore can’t be serialized. Here’s an

example of ConvertTo-XML in action (@PetriFeed):

Get-Service wuauserv -ComputerName chi-dc04,chi-p50,chi-core01 |

Export-Clixml -Path c:\work\wu.xml

The specific cmdlet used in the above example, Export-Clixml, is suitable for most

purposes. It converts the output of a PowerShell expression to XML and saves it to a

file.

18. New-AppLockerPolicy

New-AppLockerPolicy creates a new AppLocker policy from a list of file information

and other rule creation options. In total, there are five cmdlets that enable you to

interact with AppLocker, including (@RootUsers_):

Get-AppLockerFileInformation: Gets the required information for creating

AppLocker rules from a list of files or the event log.

Get-AppLockerPolicy: Used to retrieve a local, effective, or a domain AppLocker

policy.

New-AppLockerPolicy: As mentioned, this cmdlet is used for creating new

AppLocker policies.

Set-AppLockerPolicy: Sets the AppLocker policy for a specified group policy object.

Test-AppLockerPolicy: Used to determine if a user or group of users will be able to

perform certain actions based on the policy.

19. New-ItemProperty

New-ItemProperty creates a new property for an item and sets its value. You can use it

to create and change registry values and data (properties of a registry key), for

instance.

Check out this tutorial from mnaoumov.NET for some useful workarounds using this

cmdlet (@mnaoumov).

20. New-Object

To create an instance of a Microsoft .NET Framework or Component Object Model

(COM) object, use the New-Object cmdlet.

https://www.pdq.com/blog/secure-password-with-powershell-encrypting-credentials-part-1/
https://twitter.com/AdmArsenal
https://www.petri.com/converting-powershell-to-xml
https://twitter.com/PetriFeed
https://www.rootusers.com/implement-applocker-rules-using-windows-powershell/
https://twitter.com/RootUsers_
https://mnaoumov.wordpress.com/2014/06/10/powershell-registry-set-itemproperty-gotchas/
https://twitter.com/mnaoumov

Here’s an example that creates a new object using New-Object, stores it in a variable,

then pipes it to Add-Member, which will then add properties or methods specified in

the object created (@gngrninja):

$ourObject = New-Object -TypeName psobject

$ourObject | Add-Member -MemberType NoteProperty -Name ComputerName -Value $comput

erInfo.Name

$ourObject | Add-Member -MemberType NoteProperty -Name OS -Value $osInfo.Caption

$ourObject | Add-Member -MemberType NoteProperty -Name 'OS Version' -Value $("$($o

sInfo.Version) Build $($osInfo.BuildNumber)")

$ourObject | Add-Member -MemberType NoteProperty -Name Domain -Value $computerInfo

.Domain

$ourObject | Add-Member -MemberType NoteProperty -Name Workgroup -Value $computerI

nfo.Workgroup

$ourObject | Add-Member -MemberType NoteProperty -Name DomainJoined -Value $comput

erInfo.Workgroup

$ourObject | Add-Member -MemberType NoteProperty -Name Disks -Value $diskInfo

$ourObject | Add-Member -MemberType NoteProperty -Name AdminPasswordStatus -Value

 $adminPasswordStatus

$ourObject | Add-Member -MemberType NoteProperty -Name ThermalState -Value $therma

lState

21. New-WebServiceProxy

New-WebServiceProxy creates a web service proxy object that enables you to use and

manage the web service from within PowerShell. This cmdlet is a beautiful thing for

developers – it makes it unnecessary to write a lot of complex code to try to

accomplish something in PowerShell when you can simply call another service that

already makes it possible.

Here’s an example:

$url = http://<webapp>.azurewebsites.net/CreateSite.asmx

$proxy = New-WebServiceProxy $url

$spAccount = "<username>"

$spPassword = Read-Host -Prompt "Enter password" –AsSecureString

$projectGuid = ""

$createOneNote = $false

Now, you can run the following to view a list of all available methods:

$proxy | gm -memberType Method

22. New-WSManInstance

Similarly to New-WebServiceProxy, New-WSManInstance creates a new instance of a

management resource.

New-WSManInstance winrm/config/Listener

-SelectorSet @{Address="*";Transport="HTTPS"}

-ValueSet @{Hostname="Test01";CertificateThumbprint="01F7EB07A4531750D920CE6A588BF

5"}

Check out this tutorial for a complete step-by-step example of how to get the

information you need to execute this script successfully (@jonathanmedd).

23. New-WSManSessionOption

https://www.gngrninja.com/script-ninja/2016/6/18/powershell-getting-started-part-12-creating-custom-objects#create
https://twitter.com/gngrninja
http://www.jonathanmedd.net/2010/01/powershell-2-0-one-cmdlet-at-a-time-49-new-wsmaninstance.html
https://twitter.com/jonathanmedd/

New-WSManSessionOption creates a new management session hash table that’s used

as input parameters to other WS-Management cmdlets including:

Get-WSManInstance

Set-WSManInstance

Invoke-WSManAction

Connect-WSMan

Here’s the syntax (@SAPIENTech):

New-WSManSessionOption [-NoEncryption] [-OperationTimeout] [-ProxyAccessType] [-Pr

oxyAuthentication] [-ProxyCredential] [-SkipCACheck] [-SkipCNCheck] [-SkipRevocati

onCheck] [-SPNPort] [-UseUTF16] [<CommonParameters>]

24. Select-Object

The Select-Object cmdlet selects the specified properties of a single object or group of

objects. Additionally, it can select unique objects from an array or a specified number

of objects from the beginning or end of an array.

PS > Get-Process | Sort-Object name -Descending | Select-Object -Index 0,1,2,3,4

This tutorial provides more information about the various ways you can use Select-

Object (@infosectactico).

There are other cmdlets with similar functions including:

Select-String: Finds text in strings or files.

Select-XML: Finds text in an XML string or document.

25. Set-Alias

Set-Alias is a great command for enhancing productivity. It allows you to set an alias for

a cmdlet or other command element in the current session (similar to a keyboard

shortcut) so you can work faster.

The following example sets Notepad to np in the current session using Set-Alias

(@powershellatoms):

New-Alias np c:\windows\system32\notepad.exe

Note that you can also customize your PowerShell profile with the aliases you use most

often (@howtogeek).

26. Set-StrictMode

Set-StrictMode establishes and enforces coding rules in scripts, script blocks, and

expressions. It’s a useful command for enforcing code quality and preventing you from

slacking off and writing sloppy code when it’s 3:00 a.m. and you haven’t had any sleep

in two days (@adbertram).

To use it, there are two parameters to consider: -Off and -Version, and -Version has

three possible values:

Version 1.0: Prevents you from using variables that haven’t been initialized (such as

Option Explicit in VBScript)

Version 2.0: Prevents you from using variables that have not been initialized and

also prevents the calling of non-existent properties on objects, prevents you from

calling a function like a method, and prohibits the creation of variables without a

name.

https://www.sapien.com/powershell/cmdlet/new-wsmansessionoption/
https://twitter.com/SAPIENTech
https://www.darkoperator.com/blog/2013/2/4/powershell-basicsndashfiltering-and-iterating-over-objects.html
https://twitter.com/infosectactico
http://www.powershellatoms.com/powershell-101/creating-aliases-in-powershell/
https://twitter.com/powershellatoms
https://www.howtogeek.com/50236/customizing-your-powershell-profile/
https://twitter.com/howtogeek
https://mcpmag.com/articles/2015/08/13/stay-honest-with-set-strictmode.aspx
https://twitter.com/adbertram

Version Latest: This option selects the latest StrictMode version available and uses

it. This is a good option because it means that the latest StrictMode version is used

regardless of the version of PowerShell you’re using.

27. Wait-Job

Wait-Job suppresses the command prompt until background jobs running in the

current session are complete. Wait-Job doesn’t show the output from jobs, however,

but it can be used in conjunction with Receive-Job. Multithreading is possible in

PowerShell thanks to -Jobs.

Start-MultiThread.ps1 ###

$Computers = @("Computer1","Computer2","Computer3")

#Start all jobs

ForEach($Computer in $Computers){

Start-Job -FilePath c:ScriptGet-OperatingSystem.ps1 -ArgumentList $Computer

}

#Wait for all jobs

Get-Job | Wait-Job

#Get all job results

Get-Job | Receive-Job | Out-GridView

1

2

3

4

5

6

7

8

9

10

11

12

13

Start-MultiThread.ps1 ###

$Computers = @("Computer1","Computer2","Computer3")

#Start all jobs

ForEach($Computer in $Computers){

Start-Job -FilePath c:ScriptGet-OperatingSystem.ps1 -ArgumentList $Computer

}

#Wait for all jobs

Get-Job | Wait-Job

#Get all job results

Get-Job | Receive-Job | Out-GridView

28. Write-Progress

Who doesn’t love a status bar? Monitor your progress using Write-Progress, which

displays a progress bar within a Windows PowerShell command window.

Here’s an example that gives you a full progress bar and runtime strings (@credera):

$TotalSteps = 4

$Step = 1

$StepText = "Setting Initial Variables"

$StatusText = '"Step $($Step.ToString().PadLeft($TotalSteps.Count.ToString().Lengt

h)) of $TotalSteps | $StepText"'

$StatusBlock = [ScriptBlock]::Create($StatusText)

https://www.francoisdelport.com/2015/12/powershell-background-jobs/
http://www.get-blog.com/?p=22
https://www.credera.com/blog/technology-insights/perfect-progress-bars-for-powershell/
https://twitter.com/credera

$Task = "Creating Progress Bar Script Block for Groups"

Write-Progress -Id $Id -Activity $Activity -Status (& $StatusBlock) -CurrentOp

eration $Task -PercentComplete ($Step / $TotalSteps * 100)

Cmdlets for Performance Monitoring, Testing, and
Debugging

There are also a variety of cmdlets useful for developers for troubleshooting, testing,

debugging, and monitoring purposes. Here are a few you need to know.

29. Debug-Process

Developers love debugging! Well, we like it even more when there are no bugs to

eliminate, but sadly that’s not always the case. With PowerShell, you can debug a

process using the Debug-Process cmdlet.

You can also debug jobs using Debug-Job (@MS_ITPro). And, you can set breakpoints

or use the Wait-Debugger cmdlet:

PS C:\> $job = Start-Job -ScriptBlock { Set-PSBreakpoint C:\DebugDemos\MyJobDemo1.

ps1 -Line 8; C:\DebugDemos\MyJobDemo1.ps1 }

PS C:\> $job

PS C:\> Debug-Job $job

30. Disable-PSBreakpoint

If you have at one time set breakpoints but want to eliminate them, do so easily using

Disable-PSBreakpoint, which disables breakpoints in the current console. Here’s the

syntax (@ActiveXperts):

Disable-PSBreakpoint [-Breakpoint] [-PassThru] [-Confirm] [-WhatIf] []

Disable-PSBreakpoint [-Id] [-PassThru] [-Confirm] [-WhatIf] []

Alternatively, if you want to enable breakpoints in the current console, use Enable-

PSBreakpoint.

31. Get-Counter

Get-Counter gets real-time performance counter data from the performance

monitoring instrumentation in Windows OS. It’s used to get performance data from

local or remote computers at specific sample intervals that you specify.

In this example, you’ll get a counter set with a sample interval for a specified

maximum sample (@MS_ITPro):

PS C:\> Get-Counter -Counter "\Processor(_Total)\% Processor Time" -SampleInterval

2 -MaxSamples 3

In the example below, this command gets specific counter data from multiple

computers:

The first command saves the **Disk Reads/sec** counter path in the $DiskReads vari

able.

PS C:\> $DiskReads = "\LogicalDisk(C:)\Disk Reads/sec"

The second command uses a pipeline operator (|) to send the counter path in the $D

iskReads variable to the **Get-Counter** cmdlet. The command uses the **MaxSamples

** parameter to limit the output to 10 samples.

PS C:\> $DiskReads | Get-Counter -Computer Server01, Server02 -MaxSamples 10

https://blogs.msdn.microsoft.com/powershell/2014/12/11/powershell-job-debugging/
https://twitter.com/MS_ITPro
https://www.activexperts.com/admin/powershell/powershell40/disable-psbreakpoint/
https://twitter.com/ActiveXperts
https://msdn.microsoft.com/powershell/reference/5.1/microsoft.powershell.diagnostics/Get-Counter
https://twitter.com/MS_ITPro

32. Export-Counter

Export-Counter exports PerformanceCounterSampleSet objects as counter log

files. Two properties are available:

CounterSamples: Gets and sets the data for the counters.

Timestamp: Gets and sets the date and time when the sample data was collected.

And several methods, all of which are inherited from Object:

Equals(Object)

Finalize()

GetHashCode()

GetType()

MemberwiseClone()

ToString()

For example, the following command uses Get-Counter to collect Processor Time data

and exports it to a .blg file using Export-Counter (@TechGenix):

Get-Counter "\Processor(*)\% Processor Time" | Export-Counter -Path C:\Temp\PerfDa

ta.blg

33. Test-Path

Test-Path lets you verify whether items exist in a specified path. For instance, if you’re

planning to use another command on a specified file, you may need to verify that the

file exists to avoid throwing an error.

Test-Path C:\Scripts\Archive

If the folder exists, it will return True; if it doesn’t, it will return False.

It can also work with the paths used by other PowerShell providers. For instance, if you

need to know if your computer has an environment variable called username, you

could use the following:

Test-Path Env:\username

Test-Path works with variables, certificates, aliases, and functions. Check out this post

from TechNet for more details (@MS_ITPro).

34. Get-WinEvent

Look at Windows event logs using Get-WinEvent. For a list of available logs, use:

Get-WinEvent -ListLog *

Then, to review the details of a specific log, replace * with the name (pipe the output to

format-list to view all the details):

Get-WinEvent -ListLog $logname | fl *

You can also view all the events in a log by using:

Get-WinEvent -LogName System

Check out this tutorial for more details (@rakheshster).

35. Invoke-TroubleshootingPack

http://www.windowsnetworking.com/kbase/WindowsTips/WindowsServer2008/AdminTips/Admin/how-export-performance-counter-file.html
https://twitter.com/TechGenix
https://technet.microsoft.com/en-us/library/ff730955.aspx
https://twitter.com/MS_ITPro
https://rakhesh.com/powershell/using-get-winevent-to-look-at-windows-event-logs/
https://twitter.com/rakheshster

Troubleshooting packs are collections of PowerShell scripts and assemblies that help

you troubleshoot, diagnose, and repair common system problems (@ITNinjaSite). Find

troubleshooting packs at:

C:\Windows\Diagnostics\System

You can run this script to get a list of all the troubleshooting packs available on the

current system (@TechGenix):

Get-ChildItem C:\Windows\Diagnostic\System

Then, from an elevated PowerShell window, run a troubleshooting pack using this

command:

Invoke-TroubleshootingPack (Get-TroubleshootingPack C:\Windows\diagnostics\system

\networking)

36. Measure-Command

If you want to time operations in PowerShell, Measure-Command is a must-know

cmdlet. It measures how long a script or scriptblock to run. Here’s an example

(@ToddKlindt):

Measure-Command { Mount-SPContentDatabase –Name wss_content_portal –WebApplication

http://portal.contoso.com }

The output is a TimeSpan object, so it contains properties such as Hour, Minute,

Second, etc., and it’s easy to tailor the output to your preferences.

37. Measure-Object

You might also want to know how large a given object is. Use Measure-Object to

calculate the numeric properties of any object, including characters, words, and lines in

a string object, such as files of text.

Just specify the name and the type of measurement to perform, along with parameters

such as (@WindowsITPro):

-Sum: adds values

-Average: calculates the average value

-Minimum: finds the minimum value

-Maximum: finds the maximum value

The following command sums the VirtualMemorySize property values for all process

objects:

Get-Process | measure VirtualMemorySize -Sum

38. New-Event

New-Event is used to create a new event. A related cmdlet is New-EventLog, which

creates a new event log as well as a new event source on a local or remote computer.

If you have an automation engine supported by PowerShell, it’s a good practice to set

up an event log (by creating a custom Event Log Type) that logs all messages sent by

PowerShell. This is one example where you can implement Custom Logging in Event

Viewer.

Start by creating a new Event Log LogName (@BundaloVladimir):

New-EventLog -LogName Troubleshooting_Log -Source FalloutApp

http://www.itninja.com/blog/view/the-power-of-troubleshooting-packs
https://twitter.com/ITNinjaSite
http://www.windowsnetworking.com/kbase/WindowsTips/WindowsServer2012/AdminTips/Admin/using-windows-troubleshooting-packs-command-line.html
https://twitter.com/TechGenix
http://www.toddklindt.com/blog/Lists/Posts/Post.aspx?ID=450
https://twitter.com/ToddKlindt
http://windowsitpro.com/powershell/powershell-basics-sorting-measuring-objects
https://twitter.com/WindowsITPro
http://www.vladsitblog.com/create-custom-event-log-type-with-powershell/
http://www.vladsitblog.com/create-custom-event-log-type-with-powershell/

Then, to send messages to your new event log, run the following using the Write-Log

cmdlet:

Write-EventLog -log Troubleshooting_Log -source FalloutApp -EntryType Information

-eventID 10 -Message "FalloutApp has been successfully installed"

39. Receive-Job

If you need to get the results of Windows PowerShell background jobs in the current

session, use Receive-Job. This is usually used after using Start-Job to begin a job when

you need to view the specific results.

Receive-Job -Name HighMemProcess

Check out this helpful tutorial on using Receive-Job and what to do if there are

seemingly no results (@proxb).

40. Register-EngineEvent

This cmdlet is used to subscribe to the events generated by the Windows PowerShell

engine and the New-Event cmdlet. For example, the following command subscribes to

an event when the current PowerShell session exits and saves information (such as

date and time) to a log file (@jonathanmedd):

Register-EngineEvent PowerShell.Exiting

-Action {"PowerShell exited at " + (Get-Date) | Out-File c:\log.txt -Append}

41. Register-ObjectEvent

Register-ObjectEvent is similar to Register-EngineEvent, but rather than subscribe to

events generated by the PowerShell engine and New-Event, it subscribes to the events

generated by a Microsoft .NET Framework Object.

Here’s an example (@NetworkWorld):

Register-ObjectEvent -InputObject $MyObject -EventName OnTransferProgress -SourceI

dentifier Scp.OnTransferProgress `

-Action {$Global:MCDPtotalBytes = $args[3]; $Global:MCDPtransferredBytes = $args

[2]}

Register-ObjectEvent -InputObject $MyObject -EventName OnTransferEnd `

-SourceIdentifier Scp.OnTransferEnd -Action {$Global:MCDPGetDone = $True}

There are other Register- cmdlets that you may find useful including:

Register-PSSessionConfiguration: Creates and registers a new session configuration.

Register-WmiEvent: This cmdlet subscribes to a WMI event.

42. Remove-Event

When you want to remove an event, use the Remove-Event cmdlet. If you need to

remove an entire event log, you’d use Remove-EventLog, which deletes an event log or

unregisters an event source.

Alternatively, Unregister-Event cancels an event subscription but does not delete an

event from the event queue (@SS64).

43. Set-PSDebug

https://learn-powershell.net/2014/06/27/quick-hits-did-i-really-lose-my-output-with-receive-job-by-not-usingkeep/
https://twitter.com/proxb
http://www.jonathanmedd.net/2010/04/powershell-2-0-one-cmdlet-at-a-time-95-register-engine-event.html
https://twitter.com/jonathanmedd/
http://www.networkworld.com/article/2233622/microsoft-subnet/fun-with-powershell-2-0-eventing-.html
https://twitter.com/networkworld
https://ss64.com/ps/unregister-event.html
https://twitter.com/SS64

This cmdlet turns script debugging features on and off. It also sets the trace level and

toggles StrictMode.

By using Set-PSDebug at the top of your script file just after the param() statement (if

any), you can prevent errors with scripts that PowerShell doesn’t provide adequate

information about for troubleshooting purposes. Here’s an example (@r_keith_hill):

Set-PSDebug -Strict

$Suceeded = test-path C:\ProjectX\Src\BuiltComponents\Release\app.exe

if ($Succeded) {

"yeah"

}

else {

"doh"

}

PS C:\Temp> .\foo.ps1

The variable $Succeded cannot be retrieved because it has not been set yet.

At C:\Temp\foo.ps1:6 char:14

+ if ($Succeded) <<<< {

44. Start-Sleep

If you need to suspend the activity in a script or session, use Start-Sleep, which halts the

activity for a specified time period.

Start-Sleep -Seconds xxx

Start-Sleep -Milliseconds xxx

If you need to pause one or more running services, you’d use Suspend-Service.

45. Tee-Object

If you’re analyzing performance or code quality, it’s useful to be able to view the output

of a command. Tee-Object stores the command output in a file or variable and also

displays it in the console if it’s the last variable in the pipeline. If it’s not the last variable

in the pipeline, Tee-Object sends it down the pipeline.

Here’s the syntax:

Tee-Object [-FilePath] <string> [-InputObject <psobject>] [<CommonParameters>]

Tee-Object -Variable <string> [-InputObject <psobject>] [<CommonParameters>]

46. Test-AppLockerPolicy

Test-AppLockerPolicy evaluates whether input files are permitted to run for a specific

user based on the specified AppLocker policy.

Test-AppLockerPolicy [-PolicyObject] -Path [-User] [-Filter >] []

Test-AppLockerPolicy [-XMLPolicy] -Path [-User] [-Filter] [arameters>]

This tutorial offers more details about the available parameters and examples of Test-

AppLockerPolicy in action (@powershellhelp).

47. Test-ComputerSecureChannel

This cmdlet tests and repairs the connection between a local computer and its domain.

Without this command, the usual solution was previously to remove a computer from

https://rkeithhill.wordpress.com/2007/09/04/effective-powershell-item-5-use-set-psdebug-strict-in-your-scripts-religiously/
https://twitter.com/@r_keith_hill
https://juventusitprofessional.blogspot.com/2013/09/pause-sleep-powershell-powercli-script.html
http://adamringenberg.com/powershell2/tee-object/
http://powershellscripts.com/cmdlethelp.asp?cmdlet=Test-AppLockerPolicy
https://twitter.com/powershellhelp

its domain and then reconnect it in order to reestablish the relationship. Test-

ComputerSecureChannel makes it possible to reestablish the connection in less time

(@WindowsITPro).

When signed on as a local administrator, simply run the following:

Test-ComputerSecureChannel –credential WINDOWSITPRO\Administrator –Repair

You can use Test-Connection to send Internet Control Message Protocol (ICMP) echo

request packets (pings) to one or more computers.

48. Test-Path

Use Test-Path to determine whether all elements of a path exist. Essentially, it helps you

handle errors before they occur. In its simplest form, it returns True or False

(@MCPmag):

PS C:\> test-path c:\

True

PS C:\> test-path z:\foo

False

49. Trace-Command

Trace-Command configures and starts the trace of a specified command or expression.

To use it, you’ll also need to use Get-TraceSource in order to look for particular names

using wildcard characters:

PS> Get-TraceSource -Name *param*

You can filter the output to match the description to the pattern you’re after. Once

you’ve identified the possible trace name, you’ll use Trace-Command to get the

answers you need. Here’s an example:

[CmdletBinding(DefaultParameterSetName = 'Host')]

param (

ScriptBlock that will be traced.

[Parameter(

ValueFromPipeline = $true,

Mandatory = $true,

HelpMessage = 'Expression to be traced'

)]

[ScriptBlock]$Expression,

Name of the Trace Source(s) to be traced.

[Parameter(

Mandatory = $true,

HelpMessage = 'Name of trace, see Get-TraceSource for valid values'

)]

[ValidateScript({

Get-TraceSource -Name $_ -ErrorAction Stop

})]

[string[]]$Name,

Option to leave only trace information

without actual expression results.

[switch]$Quiet,

Path to file. If specified - trace will be sent to file instead of host.

[Parameter(ParameterSetName = 'File')]

[ValidateScript({

Test-Path $_ -IsValid

})]

http://windowsitpro.com/blog/quick-fix-computers-no-longer-domain-joined
https://twitter.com/WindowsITPro
https://mcpmag.com/articles/2011/05/16/handling-errors-scripts-test-path.aspx
https://twitter.com/MCPmag

[string]$FilePath

)

begin {

if ($FilePath) {

assume we want to overwrite trace file

$PSBoundParameters.Force = $true

} else {

$PSBoundParameters.PSHost = $true

}

if ($Quiet) {

$Out = Get-Command Out-Null

$PSBoundParameters.Remove('Quiet') | Out-Null

} else {

$Out = Get-Command Out-Default

}

}

process {

Trace-Command @PSBoundParameters | & $Out

}

}

PS> New-Alias -Name tre -Value Trace-Expression

PS> Export-ModuleMember -Function * -Alias *

Check out this post for more details on playing detective with Trace-Command

(@PowerShellMag).

50. Write-Debug

Write-Debug writes a debug message to the console. When you write this in a function

or script, it doesn’t do anything by default; the messages essentially lay in wait until you

either modify your $DebugPreference or activate the -debug switch when calling a

function or script. When $DebugPreference is set to ‘inquire’ or the -debug switch is

activated, the message creates a breakpoint, giving you an easy way to pop into debug

mode.

Take this example (@RJasonMorgan):

function Get-FilewithDebug

{

[cmdletbinding()]

Param

(

[parameter(Mandatory)]

[string]$path

)

Write-Verbose "Starting script"

Write-Debug "`$path is: $path"

$return = Get-ChildItem -Path $path -Filter *.exe -Recurse -Force

Write-Debug "`$return has $($return.count) items"

$return

}

The example above produces the following when run with -debug:

[C:\git] > Get-FilewithDebug -path C:\Users\jmorg_000\ -Debug

DEBUG: $path is: C:\Users\jmorg_000\

Confirm

Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help (default is "Y"):

http://www.powershellmagazine.com/2012/05/10/powershell-detective/
https://twitter.com/powershellmag
https://jasonspowershellblog.wordpress.com/2014/07/30/where-and-why-to-use-write-debug/
https://twitter.com/RJasonMorgan

What PowerShell commands do you use most often in your development work? Share

your go-to cmdlets with us in the comments below. Another essential tool to add to

your dev toolkit is Stackify Prefix, a dynamic code profiler that is simple, free, and

efficient.

Featured Image Copyright: enotmaks / 123RF Stock Photo

Improve Your Code with Retrace APM

Stackify’s APM tools are used by thousands of .NET, Java, PHP, Node.js, Python, & Ruby developers all over the

world.

Explore Retrace’s product features to learn more.

App Performance

Management

Code Profiling Error Tracking Centralized

Logging

App & Server

Metrics

Learn More

 Latest Posts Latest Posts

Get the latest news, tips, and guides on software development.

Join the 50,000 developers that subscribe to our newsletter.

Email Sign Up TodaySign Up Today

Get In Touch

PO Box 2159

Mission, KS 66201

816-888-5055

 

 

Products Solutions Resources Company

© 2020 Stackify

 About the Author About the Author

Contact Us

Request a Demo

Start Free Trial

Retrace

Prefix

.NET Monitoring

Java Monitoring

PHP Monitoring

Node.js Monitoring

Ruby Monitoring

Python Monitoring

Retrace vs New Relic

Retrace vs Application Insights

Application Performance

Management

Centralized Logging

Code Profiling

Error Tracking

Application & Server Monitoring

Real User Monitoring

For Developers

For DevOps

What is APM?

Pricing

Case Studies

Blog

Documentation

Free eBooks

Free Webinars

Videos

Ideas Portal

ROI Calculator

Support

News

About Us

News

Careers

GDPR

Security Information

Terms & Conditions

Privacy Policy

About Alexandra Altvater

https://stackify.com/what-is-powershell/
https://stackify.com/what-are-powershell-commands/
https://stackify.com/prefix
https://www.123rf.com/profile_enotmaks
https://stackify.com/retrace-application-performance-management/
https://stackify.com/retrace-application-performance-management/
https://stackify.com/retrace-code-profiling/
https://stackify.com/retrace-code-profiling/
https://stackify.com/retrace-error-monitoring/
https://stackify.com/retrace-error-monitoring/
https://stackify.com/retrace-log-management/
https://stackify.com/retrace-log-management/
https://stackify.com/retrace-app-metrics/
https://stackify.com/retrace-app-metrics/
https://stackify.com/retrace/
tel:18168885055
https://www.facebook.com/Stackify/
https://twitter.com/Stackify
https://www.youtube.com/channel/UCnxYNQDtTr_ZYUnMjeACfCg
https://www.linkedin.com/company/stackify/
https://stackify.com/contact-us/
https://stackify.com/demo-request
https://s1.stackify.com/account/createclient/?fromretrace=1
https://stackify.com/retrace/
https://stackify.com/prefix/
https://stackify.com/retrace-apm-dotnet/
https://stackify.com/retrace-apm-java/
https://stackify.com/retrace-apm-php/
https://stackify.com/retrace-apm-nodejs/
https://stackify.com/retrace-apm-ruby/
https://stackify.com/retrace-apm-python/
https://stackify.com/new-relic-alternatives-for-developers/
https://stackify.com/microsoft-application-insights-alternative/
https://stackify.com/retrace-application-performance-management/
https://stackify.com/retrace-log-management/
https://stackify.com/retrace-code-profiling/
https://stackify.com/retrace-error-monitoring/
https://stackify.com/retrace-app-monitoring/
https://stackify.com/retrace-real-user-monitoring/
https://stackify.com/continuous-application-improvement-for-developers/
https://stackify.com/continuous-application-improvement-for-devops/
https://stackify.com/retrace-application-performance-management/
https://stackify.com/pricing/
https://stackify.com/stackify-case-studies/
https://stackify.com/blog/
https://docs.stackify.com/v1/docs
https://stackify.com/stackify-developer-ebooks/
https://stackify.com/stackify-webinars/
https://www.youtube.com/stackify
https://ideas.stackify.com/?_ga=2.150793076.334670315.1525095666-1540781610.1523310878
https://stackify.com/why-stackify/#roi-calculator
https://stackify.com/support/
https://stackify.com/news-press/
https://stackify.com/about/
https://stackify.com/news-press/
https://stackify.com/careers/
https://stackify.com/gdpr/
https://stackify.com/stackify-security-information/
https://stackify.com/terms-conditions/
https://stackify.com/privacy-policy/

